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LElTER TO THE EDITOR 

Level statistics in a quasiperiodic system 
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08854, USA 
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Abstract. We examine the level statistics of Harper’s equation, a simple model of a 
one-dimensional quasiperiodic system, through the distribution of the spacings between 
adjacent eigenvalues, each normalised by the average local density of states. 

We present exact results for the distribution for both small and large amplitude (I of 
the incommensurate potential, showing it has a simple form in each of these limits. We 
show numerically that these distributions are preserved as (I approaches its critical value 
2 from each side, and also that at the critical point the distribution of the normalised 
spacings has a distinct but simple form. 

Harper’s equation defines a simple model which shows some of the novel properties 
of the quasiperiodic systems that have aroused much interest, both theoretical and 
experimental, in  recent years. Such systems are intermediate between periodic crystal 
structures, characterised by Bloch states extended throughout the system, and disor- 
dered systems, which in one and two dimensions have exponentially localised states; 
quasiperiodic systems may have localised or extended states and there may exist critical 
points at which the states are neither strictly localised nor extended. The localisation 
properties of the eigenstates of disordered systems in the infinite-volume limit are 
known to have direct consequences on the form of the spectrum for finite specimens; 
when the states are extended there is a large degree of overlap between states of similar 
energies and hence level repulsion occurs, while for localised states this does not 
happen and the energy levels are essentially uncorrelated, giving a level spacing 
distribution of Poisson form (Molchanov 1981). A pertinent question is therefore 
whether such a correspondence holds for quasiperiodic systems. In addition, a novel 
feature of quasiperiodic systems is that their spectra in general show fractal behaviour, 
in that structures in the spectrum found on a given energy scale are repeated on smaller 
and smaller scales, and the integrated density of states is a ‘devil’s staircase’. 

Harper’s equation describes a tight-binding system in one dimension with a site 
energy which takes the form of a cosine whose period has irrational ratio p to the 
lattice constant, and whose amplitude a and phase 6 are parameters of the system. 
If the eigenfunction with energy E at the nth site of a chain of length N sites is U“’, 
then Harper’s equation can be written as 

It is known (Aubry and Andre 1980) that for a < 2  all the states are extended; for 
a > 2 the states are exponentially localised with inverse localisation length L-’ = 
ln(a/2), while at the critical point a = 2 the states are neither extended nor localised 

$ Present address: Department of Civil Engineering, The University, Southampton SO9 SNH, UK. 

(1) u ( I )  “ - , + U ( n l L , + [ a  c o s ( 2 - r r p n + S ) - E , ] u ‘ , ” = 0 .  
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and the spectrum is a Cantor set with a hierarchical band structure which is related 
to the continued-fraction representation of p (Hofstadter 1976, Simon 1982, Sokoloff 
1985). Thouless and Niu (1983), Ostlund and Pandit (1984), Wilkinson (1984, 1987) 
and others have investigated the form of the spectrum through renormalisation group 
approaches, while Tang and Kohmoto ( 1986) introduce a local fractal dimensionality 
for the spectrum. Machida and Fujita (1986) have studied the level spacing statistics 
and found the expected Poisson distribution for LY > 2 and an inverse power law 
distribution at the critical point. Prange et al (1984a, b) calculated the density of states, 
the localisation properties of the wavefunctions and the frequency-dependent conduc- 
tivity for the related problem where the cosine in equation (1) is replaced by a tangent. 

Examination of the spectrum through the distribution of level spacings provides a 
valuable comparison with the corresponding results for disordered systems, but we 
shall show in this letter that simpler results may be obtained if the spacing between 
adjacent levels is normalised by the average of the local density of states and the 
distribution of the resulting quantities calculated. A single level spacing can be seen 
as the product of two distinct factors; the behaviour we are interested in (for example, 
possible level repulsion), represented by some function d(  E ) ,  is multiplied by the 
inverse density of states, so that where the density of states is not independent of the 
energy the statistics of the raw level spacings does not yield directly the information 
we want (in one-dimensional systems, such as the one discussed here, a band edge in 
the spectrum corresponds to a singularity in the density of states, so the problem 
becomes acute). Using our normalised spacings, however, each level spacing is 
individually compared with the local average before the statistics are evaluated, so 
that we expect that, as the spectrum fills out with increasing system size, features such 
as the fractal nature of the spectrum at the critical point should show up in the 
distribution of the normalised spacings. 

We define the normalised level spacing A, by 

A, = O ) , A E ,  (2)  

where ( p ( E ) ) ,  is the average local density of states per site of a chain of length N ,  >> N 
over an energy range AE,  between adjacent levels E, and E,,, .  We rewrite this for 
convenience as 

A I =  K ( E , ) - K ( E , - i )  (3) 
where K ( E )  is the integrated density of states per site of a 'long chain' of NI,  sites; 
K ( E )  is well defined for an infinite chain and is also more straightforward to evaluate 
numerically than p ( E ) .  With this definition the typical value of A, for a chain of 
length N is 1/N. We define the cumulative distribution f ( A )  as the fraction of the 
total number of A, having values less than or equal to a given A ;  the cumulative 
distribution will provide a clearer comparison between exact and numerical results 
than the simple density of values per unit interval. 

In a system where the spectrum fills out uniformly as the size of the system increases 
(for example, a single particle in a square well) it follows that the A, have the same 
value, 1/N, everywhere and hencef(A) is a unit step function at A = 1 /  N. By contrast, 
let us consider a simple Cantor set which has a fractal structure analogous to-although 
much simpler than-that of the spectrum of Harper's equation at the critical point. If  
we start with a spectrum of two levels, we can recursively double the number of levels 
of a system with N = 2" levels by placing two new levels between alternate pairs of 
levels, and none in the other half of the gaps. With this prescription it is clear that 
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only half of the gaps of the spectrum at any stage subsequently have levels inserted 
in them, so we obtain the result that A, can have one of two values, zero and 2 / N ,  
and hence f ( A )  has the value 4 for O <  A < 2 /  N and unity for 2/ N <A. I t  should be 
noted at this point that this result depends only on the relative ordering of levels in 
the recursion scheme and not on any specification of the size of the gaps at each 
recursion step. 

We know that the structure of the spectrum depends on the continued-fraction 
expansion of p ;  we therefore choose to compare results for p, a quadratic irrational 
(those numbers which have all the terms in their continued fraction equal), with those 
for a more general irrational, with no special pattern in the continued fraction. We 
use the reciprocal of the golden mean, a&' = (J5 - 1 ) / 2  = 1/( 1 + I / (  1 + 1/( 1 + . . .))) 
as an example of the former, and the natural logarithm of 2, In 2 =  
1/(1+1/(2+1/(3+1/(1+1/(6.. .))))). To minimise boundary effects we set the size 
of the system equal to the denominator of one of the series of rational approximants 
to the appropriate p :  for p = a;' these are (1, 2 ,  J ,  5 ,  8 ,  E, . . . }, while for p = In 2 
they are ( 1 ,  3, &,, A ,  g,  m, 365, . . .}. In figure 1 we illustrate the spectrum of 
equation (1) as a function of a, in the case /3 = a&'. 

Equation (1) can be written as a matrix equation; with the boundary conditions 
uo = U,,,+' = 0 the problem reduces to the diagonalisation of a symmetric tridiagonal 
matrix. The integrated density of states K ( E )  is found by counting the zero crossings 
of U, per unit length as ( 1 )  is iterated at energy E from one end of a long chain of 
length ND >> N.  We found that using ND = lOOON gave adequate resolution in f(A); 
increasing ND beyond this changedf(A) negligibly even for NO = 10'. In the following 
our analytic results are derived with the phase 6 equal to zero, so for consistency the 
comparable numerical results were also calculated with S = 0. Except at the critical 
point, the numerical results presented here suggest that large enough systems are being 
treated for the limiting behaviour to be evident, but at a = 2 finite-size effects still 
appear to be significant. The effects of boundary conditions are therefore reduced by 
the alternative method of averaging the distributions over many evenly spaced phases 
in the range 0 < 6 < 2 ~ .  

We derive exact results for the cases a = 0 and a +CO and present numerical results 
for a just below, at and above the critical point, a = 2. 

( a )  a = 0. With the boundary conditions as given, the eigenvalues of (1) for a 
chain of N sites are 

1 2 3 5 8  

192 253 

k = l , .  . . , N. 

Hence for a long system of length ND+0o,  the density of states is 

and 
N - k  

K ( E ) = -  
N '  (4) 

Since the energy Ek is a monotonic function of k, the difference in K ( E )  between 
adjacent eigenvalues is 

and hence f(A) is a unit step function at A = 1/ N. 
A = l / N  
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( b )  a +CO. By redefining the energy, E + E k / a ,  we find 

= 1 -2{pk+ 8 ) m o d  I 

= 2 { p k + 6 ) m o d  1-1 if { p k + 6 ) m o d  I ( 5 )  

if {pk + 6)mod Is f 

With p = (T;', 6 = 0 and N = F,, the fth Fibonacci number, this expression gives three 
possible values of A :  2p'+I, 2p' and 2p'- ' ,  with weights which tend as N + cm to the 
values f Np', f N and Np, respectively. With 6 Z 0 it was found numerically that 
more than three different values of A appear and that they are displaced in a non-trivial 
way as 6 is varied. 

With other values of p, and with N equal to the denominator q, of a rational 
approximant to p, a small number of values of Ak are again obtained. In general, 
these values and their relative weights depend on N,  and a scaling limit like that 
observed above for p = a;' results only when all the terms in the continued fraction 
are the same, as is the case for the quadratic irrationals. Changing N away from one 
of the q, or introducing a non-zero phase 6 has a similar effect to that described above. 

Numerical results with p = U;', N = 377, for both a = 0 and a = 50 are shown 
(figures 2 and 3), together with the appropriate exact results; these demonstrate the 
accuracy of the numerical procedure. 

Figure 4 shows numerical results for p = (+;I, a = 1.8, together with the exact f ( A )  
for the same length chains with a = 0, while figure 5 shows the results for a = 2.2. with 

Figure 1.  The spectrum of equation ( 1 )  for p = oC,'. N = 5 5  and 6 = 0 for varying (I, scaled 
by [ l  + ( ( 1 / 2 ) ~ ] - ' ' ~ .  
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Figure 2. Numerical result for f (A)  with p = U;', N = 377 and a = 0, with the exact result 
for a = 0 (full line). 
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Figure 3. Numerical result forf(A) with p = uz', N = 377 and (I = 50, with the exact result 
for a + CO. 

those for a + 00 for comparison. It can be seen immediately that the forms of $(A) 
for these chains close to the critical point increasinily resemble those in the respective 
limiting regime as their length increases. This is remarkable since the spectrum close 
to the critical point (figure 1) is very different from that obtained in either (Y = O  or 
a +CO. The distributions for (Y < 2 were found to be independent both of the phase 6 
and the incommensuration parameter p, while phase averaging for a > 2  gave a 
continuous range of A. 

For other non-quadratic irrational j3, f (A)  in large systems is close to its a +CO 
form throughout the localised regime (figure 6 ) .  Since this form depends on system 
length there is no simple scaling limit as for quadratic irrationals, but neither does the 
behaviour resemble that in random systems. 

In the case of a = 2 and j3 = aG' (figure 7 )  short chains give a rather complicated 
f ( A )  with many large sharp steps at integer powers of j3 and elsewhere. For longer 
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Figure 4. Numerical results for p =U: ' ,  a = 1.8, with the exact results for a = 0. ( a )  
N = 8 9 , ( b )  N=610. 
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Figure 5. Numerical results for p = U:', a = 2.2, with exact results for a -* m. ( a )  N = 89, 
( b )  N = 610. 

chains, or if phase averaging is used, the two steps at PI- '  and p' become more 
dominant, with the remaining weight (less than 30%) divided between many steps 
(figure 8 ( a ) ) .  For general p it was observed that the positions of these sharp steps 
may be fitted very well by the allowed values of Ak given by 

K ( & )  = I P k ) m o d  1 

(figure 8 ( b ) ) .  
We have therefore demonstrated that the normalised level spacing A for the Harper 

equation in the cases cy = O  and cy +CO has distribution functions f ( A )  with simple 
forms which differ from those in random systems. Our results indicate in addition 
that, for long enough chains, the trivial distribution of A at cy = O  is maintained as cy 
is brought up to the critical point from below, and similarly the distribution in the 



f l A l  

la1 

Letter to the Editor 

A---- 
I 

1 

flbl 

(a1 

A 
0 111649 

A 

Figure 6. As figure 5 but with p = In 2. ( a )  N = 88, ( b )  N = 1649. 
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Figure 7. Numerical results for f ( A )  at p = a:', a = 2. ( a )  N = 89, ( b )  N = 610. 

limit a -f 00 is preserved as a approaches 2 from above, despite the fact that the form 
of the spectrum itself near the critical point is very different from its appearance for 
a far from 2. Our results are consistent with the level repulsion one might expect for 
a < 2, since the latter would favour maximising the level spacing in any energy range 
to give a spacing which is directly proportional to the inverse density of states, while 
in the case of a > 2 the spacings vary about a local average on a scale of the order of 
1/N compared with the bandwidth of the spectrum (see figure 1). Our numerical 
results suggest that, at a = 2 and with p = 00' for long enough chains, f ( A )  has a 
scaling limit with two values of A dominant, but we have no analytic result to confirm 
this. 

Our normalisation of the level spacings removes much of the structure of the 
distributions obtained by Machida and Fujita (1986), which appear to be superpositions 
of distributions of more than one functional form. Our results, in contrast, are simple 
in form and, in addition, indicate trivial behaviour for all a in the extended regime 
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Figure 8. Numerical results at a = 2 averaged over 100 phases. ( a )  p = U;', N = 377, ( b )  
p =In 2, N = 365. The full lines indicate the allowed values for A k  given by K ( E , )  = 

W)"d 1' 

(a < 2), which is not shown by the distribution of the raw spacings. There is a distinct 
contrast to the disordered case, where the Poisson distribution is maintained for the 
normalised level spacings. Our results are not directly comparable with those of Tang 
and Kohmoto (1986), since the latter authors study how the number of states in an 
energy interval scales with the size of the interval; by contrast, in our approach the 
normalisation by the density of states removes the energy scale throughout the spectrum 
and so we treat the filling of gaps between levels with increasing system size independent 
of the size of the gaps. Our results for a < 2 are broadly compatible with theirs, 
however, in that our 'trivial' f ( A )  over the whole of this regime corresponds to the 
trivial Hausdorff dimensionality of unity. A complete description of a recursion scheme 
for filling in a fractal spectrum would lead to a prediction off(A) at the critical point 
but so far such an exact result has not been found for this system. 
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Research Council for a postgraduate research grant and the directors of the Institute 
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Rutgers was supported by the National Science Foundation under grant no DMR-85- 
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